Fluctuation Spectroscopy Making signal out of noise

Don C. Lamb

Laboratory for Fluorescence Applications in Biological Systems Institute of Physical Chemistry Munich, Germany

Microscopy: What we measure in living cells

A Poissonian Process

Experiments that result in counting the number of events in a given time or in a given object can be described by a Poisson process provided:

a) Number changes on nonoverlapping intervals are independent.

b) The probability of exactly one change occurring in a sufficiently short interval of length h is approximately λh

c) The probability of two or more changes in a sufficiently short interval is essentially zero.

Observation of gold colloids using an ultra-microscope (Svedberg and Inouye, *Zeitschr f. Physik Chemie* **1911**, 77:145-119)

Measurement of the Equilibrium Thermodynamic Fluctuations in Molecular Number

 $1200020013241231021111311251110233133322111224221226122\\142345241141311423100100421123123201111000111-21100\\132000001001100010002322102110000201001-3331220002312\\21024011102-12221123100011033111021010010103011312121\\010121111211-1000322101230201212132111011002331224211\\0001203010100221734410101002112211444421211440132123314\\313011222123310121112224122311133221321100004104320121\\20011322231200-2532120332331111002100220130113211\\3120010131432211221122323442223032142153220020214212323\\204311231200331422345213411041232220221$

http://www.1911encyclopedia.org/Microscope

Autocorrelation Analysis

8

The normalized autocorrelation function (ACF) is given by:

$$G(\tau) = \frac{\left\langle F(t)F(t+\tau)\right\rangle - \left\langle F(t)\right\rangle^2}{\left\langle F(t)\right\rangle^2}$$
$$= \frac{\left\langle \delta F(t)\delta F(t+\tau)\right\rangle}{\left\langle F(t)\right\rangle^2}$$

where $\delta F(t) = F(t) - \langle F(t) \rangle$

For processes that are:

Stationary: i.e. the average parameters do not change with time

the ACF is independent of the absolute time

Ergodic: i.e. every sizeable sampling of the process is representative of the whole

the time average is equal to the ensemble average

$$\frac{\left\langle \delta F(t) \delta F(t+\tau) \right\rangle}{\left\langle F(t) \right\rangle^2} = \frac{\left\langle \delta F(0) \delta F(\tau) \right\rangle}{\left\langle F \right\rangle^2}$$

The autocorrelation function (ACF) measures the self similarity of the observable *F* as a function of *t*

 $G(\tau)$ has maximum at G(0)

The amplitude is proportional to the size of the fluctuations

$$G(0) = \frac{\left\langle \delta F(t) \delta F(t) \right\rangle}{\left\langle F \right\rangle^2} = \frac{\left\langle \delta F(t)^2 \right\rangle}{\left\langle F \right\rangle^2} = \frac{\left\langle \left(F(t) - \left\langle F(t) \right\rangle \right)^2 \right\rangle}{\left\langle F \right\rangle^2} = \frac{\sum_{i=1}^{\ell} \left(F_i - \left\langle F \right\rangle \right)^2 / \ell}{\left(\sum_{i=1}^{\ell} F_i / \ell \right)^2}$$

$$G(0) = \frac{\sigma^2}{\mu^2} = \frac{\langle N \rangle}{\langle N \rangle^2} = \frac{1}{\langle N \rangle}$$
 For a Poissonian process

For non-conserved, non-periodic signals

 $G(t) \rightarrow 0$ as $t \rightarrow \infty$

Alternately, the ACF is sometimes given as:

$$g(\tau) = \frac{\left\langle F(t)F(t+\tau)\right\rangle}{\left\langle F(t)\right\rangle^2} = G(\tau) + 1$$

 $g(\tau)$ can be interpreted as being proportional to the probability of detecting a photon at delay τ when a photon was detected at $\tau = 0$

230pM Rhodamine 6G in buffer

Amplitude ACF \Rightarrow

Concentration

 $\langle N \rangle = 0.085$ molecules

Decay ACF ⇒ Diffusion Constant

 $D = 415 \ \mu m^2 / s (w_r = 456 \ nm)$

$$G_D(\tau, N, \tau_D) = \frac{\gamma}{\langle N \rangle} \left(\frac{1}{1 + \tau / \tau_D} \right) \left(\frac{1}{1 + \left(w_r / w_z \right)^2 \tau / \tau_D} \right)^{1/2}$$

High Intensity Limit:

Uncertainty dominated by number of fluctuations:

$$\frac{S}{N} \approx \left(\frac{t_{\exp}}{\tau_{C}}\right)^{\frac{1}{2}}$$

where t_{exp} is the measurement time of the experiment and τ_C is the correlation time of the fluctuations

Low Intensity Limit:

Uncertainty dominated by number of photons:

$$\frac{S}{N} \approx \left(t_{\exp}\right)^{\frac{1}{2}} I_T \frac{\gamma}{\langle N \rangle}$$
$$I_T = \varepsilon \langle N \rangle$$
$$\frac{S}{N} \approx \left(t_{\exp}\right)^{\frac{1}{2}} \varepsilon \gamma$$

Only possibilities to improve the S/N ratio are:

- extend the measurement time
- increase the counts per molecule second
- change the geometry

S/N is independent of sample concentration!!!

Time Scale: $ns/\mu s \rightarrow ms/s/hrs$

Early time limit: Detector afterpulsing: (100 ns - 5 µs) Detector deadtime: (2 ns - 30 ns) Numbers of available photons: (10 ns - 100 ns)

Long time limit:

Time molecule remains in the excitation volume (typically ~ 1 ms)

Increase the long time limit by:

Increasing the excitation volume: (10 ms)

Placing sample in viscous solvents or gels: (s)

Slow reactions can be measured by changes in the ACF with time. (hrs)

Concentration Limits: $\sim 200 \text{nM} \rightarrow 1 \text{pM}$

Maximum Concentration: (200nM)

Detector Saturation

Other noise sources become comparable to the signal

Minimum Concentration: (1pM) Limit statistics Impurities

Titration of RNA Polymerase and DNA w/ 9 bp Artificial Bubble

Freely diffusing, non-interacting particles in an open volume.

Photon are not detected stochastically, but in bursts when a molecule transverses the probe volume.

Several processes other than diffusion can lead to fluctuations in fluorescence intensity

e.g. Excitation into the Triplet State

If a particle blinks as it diffuses across the probe volume, an additional term appears in the fluctuation amplitude.

$$G(\tau) = \frac{\gamma}{\langle N \rangle} \left(\frac{1}{1 + \tau / \tau_D}\right) \left(\frac{1}{1 + \left(w_r / w_z\right)^2 \tau / \tau_D}\right)^{\frac{1}{2}} \left(1 + \frac{T}{1 - T} e^{\frac{t}{\tau_T}}\right)$$

T is the fraction of molecules (on average) in the triplet state

 τ_T is the triplet lifetime.

Dynamics of DNA Hairpin Formation

where $K = k_+ / k_-$, $\lambda = k_+ + k_-$, and \Im is the fractional intensity of state A or B

$$G_c(\tau) = G_D(\tau, N_C, \tau_D)$$

Diffusion term drops out of the ratio

$$\frac{G_b(\tau)}{G_c(\tau)} = \frac{G_b(0)}{G_c(0)} \left(1 + \frac{1}{K} \exp(-\lambda\tau) \right)$$
$$\lambda = k_+ + k_-$$
$$1/\lambda = 24.2 \ \mu s$$

Bonnet, Krichevsky, Libchaber PNAS (1998) 95:8602

Freely diffusing, non-interacting particles in an open volume.

Photon are not detected stochastically, but in bursts when a molecule transverses the probe volume.

Several processes other than diffusion can lead to fluctuations in fluorescence intensity

We can determine: Excited state lifetime Rotational Diffusion Constant Reaction Kinetics Triplet-State Lifetime Triplet-State Amplitude Translational Diffusion Constant Concentration

$$G(\tau) = \Im_{1}^{2} G_{D1}(\tau, N_{1}, \tau_{D_{1}}) + \Im_{2}^{2} G_{D2}(\tau, N_{2}, \tau_{D_{2}})$$

$$\Im_{i} = \varepsilon_{i} \langle N_{i} \rangle / (\varepsilon_{1} \langle N_{1} \rangle + \varepsilon_{2} \langle N_{2} \rangle)$$
Fractional Intensity
$$G(\tau) = \sum_{i=1}^{M} \Im_{i}^{2} G_{Di}(\tau, N_{i}, \tau_{D_{i}})$$
Multiple species

FCS measurements in a fluorescent background

i.e.

With Background

Situation: Large number of weakly fluorescing particles:

Without Background

Although
$$Q_{\rm S} \gg Q_{\rm B}, N_{\rm S} \ll N_{\rm B} \Rightarrow$$

$$G_B(0) = \left(\frac{\gamma}{\langle N_B \rangle}\right) \ll \left(\frac{\gamma}{\langle N_S \rangle}\right) = G_S(0)$$

$$G(\tau)_{eff} = \Im_S^2 G_{Diff}(\tau, N_S, \tau_{D_S}) + \Im_B^2 G_{Diff}(\tau, N_B, \tau_{D_B})$$

$$G(\tau)_{eff} = \Im_S^2 G_{Diff}(\tau, N_S, \tau_{D_S}) + \Im_B^2 G_{Diff}(\tau, N_S, \tau_{D_S})$$

The amplitude of the ACF is reduced by the square of the fractional intensity

Rev. Sci. Instrum. 76, 083104 (2005)

© 2005 American Institute of Physics

The sample consists of three species:

 N_G Particles/complexes with a green label only

EFAB

N_R Particles/complexes with a red label only

N_{GR} Particles/complexes containing both green and red labels

$$G(\tau) = \frac{\left\langle F_G(t)F_R(t+\tau)\right\rangle - \left\langle F_G(t)F_R(t)\right\rangle^2}{\left\langle F_G(t)F_R(t)\right\rangle^2}$$

Ideally, only the N_{GR} particles cross correlate

$$G_{GR}(\tau) = \frac{\gamma \langle N_{GR} \rangle G_D(1, D_{GR}, \tau)}{\langle N_G + N_{GR} \rangle \langle N_R + N_{GR} \rangle}$$

Kettling, Koltermann, Schwille, Eigen PNAS (1998) 95:1416

Ergodic: i.e. every sizeable sampling of the process is representative of the whole

the time average is equal to the ensemble average

The Image records fluorescence fluctuations in space which reflect the distribution of labeled molecules

Petersen *et al. Biophys. J.* 65, 1135-1146 (1993); Wiseman and Petersen, *Biophys. J.* 76, 963-977 (1999)

Spatio-Temporal Image Correlation Spectroscopy

Spatial ICCS Simulations

ICS (Image Correlation Spectroscopy) spatial autocorrelation of an image

Size and number of membrane aggregates (Paul Wiseman & Nils Petersen)

tICS (Temporal Image Correlation Spectroscopy)

time autocorrelation at one pixel (Mamta Srivastava Paul Wiseman, Nils Petersen)

STICS (Spatio-Temporal Image Correlation Spectroscopy)

Diffusion and velocity in 2-D (Ben Herbert & Paul Wiseman)

kICS (k-space Image Correlation Spectroscopy)

Distinguish between diffusion and binding on the basis of spatial correlations (Paul Wiseman, David Kolin, David Ronis)

Fluctuations in Time and Space: RICS

Temporal information hidden in the raster-scan image:

The image correlation is performed within each frame

RICS Simulations for Different Diffusion Coefficients

Module 2. Routing bit 0 3478318 photons

3500

3500

ling bit (

3000

3000

eGFP-mCherry in HeLa cells

Removal of Immobile Structures and Slow Moving Features

Fit using 3-D diffusion formula

Pixel size =	0.092 µ m
Pixel time=	8 µs
.	

Line time = 3.152 ms

Wo = $0.35 \ \mu \,\mathrm{m}$

G1(0) = 0.0062 D1 = 7.4 μ m²/s G2(0) = 0.00023 D2 = 0.54 μ m²/s Bkgd = -0.00115

HIV: membrane enveloped retrovirus with RNA genome

Supplemental Movie

- PI(4,5)P₂ induces conformational switch in Gag, Myristate gets exposed and binds PM Ono et al.(2004), PNAS 101, 14889-14894
- Matrix domain G2A mutant Göttlinger et al. (1989), PNAS 86, 5781-5785
 - Defective for assembly and particle release
 - Interacts much less with membranes!
- In vitro: Gag assembles into VLPs upon addition of nucleic acid Campbell et al.(1995), J Virology **69**, 6487-6497
 - RNA primes Gag for interactions ?

- Targeting Gag away from RNA or Gag
 - NC C15A inhibits Gag-RNA interaction Poon et al. (1996), J Virology 70, 6607-6616
 - CA W184A/M185A inhibits CA-CA von Schwedler et al. (2003), J Virology 77, 5439-5450

