Localization microscopy PALM/STORM

Juri Bach & Marc Bramkamp

Resolution

Allen et al, 2013

Choosing the right technique for your approach

Resolution

- Resolution_{x,y} = λ / 2NA
- Resolution_z = $2\lambda / [NA]^2$
- xy resolution: ~ 220 nm
- z resolution (confocal): ~ 520 nm

It is physically impossible to resolve smaller objects!

How is it possible to resolve complexes smaller than 220 nm by light microscopy?

Restricting the z-axis

Super resolution microscopy

- Stimulated emission depletion (STED)
- Saturated illumination microscopy (SIM)
- Localization microscopy
 - stochastic optical reconstruction microscopy (STORM)
 - (fluorescence) photo-activation localization microscopy (f)PALM
- Various others…

Nobel Prize in Chemistry 2014 for surpassing the limitations of the light microscope

Eric Betzig, Stefan W. Hell, William E. Moerner

Localization microscopy

- STORM = Stochastic Optical Reconstruction Microscopy (Zhuang 2006)
- PALM = Photoactivated Localization Microscopy (Betzig & Hess 2006)
- FPALM = Fluorescence Photoactivation Localization Microscopy (Hess 2006)
- PALMIRA (Hell 2007), GSDIM (Hell 2008), dSTORM (Sauer 2008), SMACM (Moerner 2008)
- PAINT (Hochstrasser 2006), SPRAYPAINT (Moerner 2011), SOFI (Weiss 2009)
- And others...

The principle of single molecule localization fluorescence microscopy

Full Width at Half Maximum Pixel Data (c) Centerline 1723 δx (a) (b) Localized Data Point Raw Data Gaussian Fit Function Zeiss Point-Spread Function CCD Gaussian Display Fit (b) (a) Pixel Pixel

Pixe

- Single molecules can be localized with high precision
- Serial imaging makes it possible to reconstruct the positions of all labeled molecules

Fitting Single-Molecule Pixel Data to a Gaussian Function

Allen et al, 2013

Pixel

The principle of single molecule localization fluorescence microscopy

- Single molecules can be localized with high precision
- Biological specimens typically contain many labeled molecules
- By imaging only a few molecules at a time, it is possible to reconstruct the positions of all the labeled molecules
- This can be achieved by switching fluorescent molecules between "on" and "off" states

The principle of single molecule localization fluorescence microscopy

Super-resolution

image

Widefield image

Moerner, 2006

Fluorophores for single molecule localization fluorescence microscopy

Photoswitchable dyes and fluorescent proteins

Photoactivatable and photoconvertable fluorescent proteins

Principle of localization fluorescence microscopy

Treat your sample well

Life on a microscope slide

Name	Molecular weight	Linear size	Compos	ition
IgGs	\sim 150 kDa	\sim 15 nm	Protein	
Fabs	\sim 50 kDa	~9 nm	Protein	
scFvs	\sim 30 kDa	\sim 6 nm	Protein	
VHHs (papobodies)	\sim 15 kDa	\sim 3 nm	Protein	
Affibodies	~6 kDa	~2 nm	Protein	
DARPins	~10-30 kDa	~2 - 3 nm	Protein	
Fibronectin III (FN3, Monobodies)	\sim 10 kDa	~2 nm	Protein	
Aptamers	~10–20 kDa	~2 - 3nm	Single str DNA or F	randed RNA
24	***	\$	-	-
IgG complex	lgG	Fab	scFv	VHH
*	-	*	-	-
Affibody	DARPin	FN3	Aptamer	GFP

Fornasiero and Opazo, 2015

Numerous fluorophores / dyes already

exist

Protein (Acronym)	Ex (nm)	Em (nm)	EC (×10 ⁻³)	QY	N photons emitted	Contrast ratio	Quaternary structure	Brightness (% of EGFP)	
Photoactivatable fluorescent proteins									
PA-GFP (N)	400	515	20.7	0.13	70	NA	Monomer	8	
PA-GFP (G)	504	517	17.4	0.79	300	100	Monomer	41	
PS-CFP2 (C)	400	468	43.0	0.20	ND	NA	Monomer	26	
PS-CFP2 (G)	490	511	47.0	0.23	260	1500	Monomer	32	
PA-mCherry 1 (R)	564	595	18.0	0.46	ND	4000	Monomer	25	
PA-TagRFP (R)	562	595	66.0	0.38	500	550	Monomer	75	
	Photoconvertible fluorescent proteins								
mKikGR (G)	505	515	49.0	0.69	ND	NA	Monomer	101	
mKikGR (R)	580	591	28.0	0.63	970	400	Monomer	53	
tdEos (G)	506	516	34.0	0.66	ND	NA	Tandem dimer	165	
tdEos (R)	569	581	33.0	0.60	750	>4000	Tandem dimer	59	
mEos2 (G)	506	519	56.0	0.74	ND	NA	Monomer	140	
mEos2 (R)	573	584	46.0	0.66	500	>2000	Monomer	90	
Dendra2 (G)	490	507	45.0	0.50	ND	NA	Monomer	67	
Dendra2 (R)	553	573	35.0	0.55	ND	300	Monomer	57	
			Photos	witchabk	e fluorescent pro	oteins			
Dronpa	503	517	95.0	0.85	120	<1000	Monomer	240	
Dronpa-3	487	514	58.0	0.33	ND	ND	Monomer	56	
rsFastLime	496	518	39.1	0.77	ND	ND	Monomer	89	
Padron	503	522	43.0	0.64	ND	ND	Monomer	82	
bsDronpa	460	504	45.0	0.50	ND	ND	Monomer	67	
KFP1	580	600	59.0	0.07	ND	ND	Tetramer	12	
mTFP0.7	453	488	60.0	0.50	ND	ND	Monomer	89	
E2GFP	515	523	29.3	0.91	ND	ND	Monomer	79	
rsCherry	572	610	80.0	0.02	ND	ND	Monomer	5	
rsCherryRev	572	608	84.0	0.005	ND	ND	Monomer	1	
			Photoconvertib	le/photos	witchable fluore	escent proteins			
IrisFP (G)	488	516	52.2	0.43	ND	ND	Tetramer	67	
Inspect	221	580	35.4	0.47	ND	ND	Tetramer	50	
Synthetic fluorophores									
Cy5	649	664	250.0	0.28	6000	ND	NA	208	
Cy5.5	675	694	190.0	0.23	6000	ND	NA	130	
Cy7	747	767	200.0	0.28	1000	ND	NA	167	
Alexa Fluor 647	650	665	240.0	0.33	6000	ND	NA	236	
ATTO 532	532	553	115.0	0.90	ND	ND	NA	308	
Rhodamine B	530	620	105.0	0.65	750	ND	NA	203	
C-Rhodamine	545	575	90.0	0.90	ND	ND	NA	241	
C-Fluorescein	494	518	29.0	0.93	ND	ND	NA	80	

mMaple2 mMaple3

- N is the number of photons gathered
- **a** is the pixel size of the imaging CCD detector
- b is the standard deviation of the background (which includes background
- fluorescence emission combined with detector noise)
- \mathbf{s}_{i} is the standard deviation or width of the distribution (in direction \mathbf{i})

- N is the number of photons gathered
- **a** is the pixel size of the imaging CCD detector
- b is the standard deviation of the background (which includes background
- fluorescence emission combined with detector noise)
- \mathbf{s}_{i} is the standard deviation or width of the distribution (in direction \mathbf{i})

- N is the number of photons gathered
- **a** is the pixel size of the imaging CCD detector
- b is the standard deviation of the background (which includes background
- fluorescence emission combined with detector noise)
- \mathbf{s}_{i} is the standard deviation or width of the distribution (in direction \mathbf{i})

- N is the number of photons gathered
- **a** is the pixel size of the imaging CCD detector
- b is the standard deviation of the background (which includes background
- fluorescence emission combined with detector noise)
- s_i is the standard deviation or width of the distribution (in direction i)

N is the number of photons gathered

- **a** is the pixel size of the imaging CCD detector
- **b** is the standard deviation of the background (which includes background
- fluorescence emission combined with detector noise)
- \mathbf{s}_{i} is the standard deviation or width of the distribution (in direction \mathbf{i})

$$d = \frac{1}{\sqrt{N}} \cdot \frac{\lambda}{2NA}$$

Zeiss

PAFP	Preactivation/postactivation emission wavelength, nm*	Photon no.	On–off switching rate ratio	ClpP clustering [†]	No. of localizations per cell [‡]	Maturation time, min [§]
Dendra2	507/573	686	4.2×10^{-6}	-	1,810	38
mEos2	519/584	745	2.9×10^{-6}	+	1,290	340
mEos3.2	516/580	809	2.6×10^{-6}	-	1,950	330
tdEos	516/581	774	3.2×10^{-6}	-	1,800	330
mKikGR	515/591	599	4.1×10^{-6}	+	3,800	31
PAmCherry	—/595	706	7.8×10^{-6}	+	4,200	61
PAtagRFP	—/595	906	5.7 × 10 ⁻⁶	-	760	200
mMaple	505/583	798	1.9 × 10 ⁻⁶	+	24,000	48
mMaple2	506/582	783	1.0×10^{-6}	+	21,000	62
mMaple3	506/583	675	6.2×10^{-7}	-	12,300	49
PAGFP	—/517	313	1.3 × 10 ⁻³	-		<10
PSCFP2	468/511	223	8.1 × 10 ⁻⁶	+		
Dronpa	—/517	262	5.8×10^{-4}	-		25
mGeosM	—/514	248	4.9×10^{-4}	+		<10

PAFP	Average no. of blinking events*	No. of imaged molecules per cell [†]	Expression level by quantitative Western, molecules per cell [‡]	Percentage of PAFP imaged, % [§]
Dendra2	1.7	1,060	27,000	3.9
mEos2	2.8	460	47,000	1.0
mEos3.2	3.0	650	38,000	1.7
tdEos	3.3	270	6,600	4.0
mKikGR	1.7	2,200	82,000	2.7
PAmCherry	1.9	2,200	61,000	3.6
PAtagRFP	1.7	450	50,000	0.89
mMaple	2.5	9,700	49,000	20
mMaple2	2.7	7,700	42,000	18
mMaple3	2.8	4,400	42,000	10

Wang et al., 2014

The dark site of the fluorophore

- PALM (dark, activated, on until bleached)
- Photoswitching (on / off)
 - Isomerizations
 - Photochemical conversion to dark state with optically induced recovery
- Blinking where excitation intensity controls emitting concentration
 - Triplet states
 - Reversible photochem. (EYFP)
 - Redox dark state

Determination of cluster size

Nan et al., 2013

Determination of cluster size

Lee et al., 2012

PALM image of *E. coli* FtsZ-mEos2 with conventional clustering thresholds: spots within 167 nm (1 camera pixel) and 50 ms (1 frame) were grouped together and plotted.

Dtmax

total imaging acquisition time / number of localizations (detected in the maximum density region)

Nref

Nunprocessed / average number of localizations (α) N = number of molecules

Coltharp et al., 2012

Drift correction

Multicolour imaging

By activation wavelengths

- Dye-pairs
- Crosstalk from nonspecific activation
- Laser sequences
- Single channel detection
- Images naturally aligned

By emission wavelengths

- Simple fluorophores
- Low crosstalk
- Continuous imaging
- Multi-channel detection optics
- Needs nanometer scale

image alignment

Imaging in 3D

3D STORM/PALM

Pavani et al., PNAS 2009

3D fPALM

Single molecule localization super resolution microscopy

Advantages

- High precision, lateral resolution
 ~20-40 nm (in vivo)
- Quantitative imaging, visualizing single molecules
- 3D imaging possible
- gentle imaging conditions

Disadvantages

- Requires special fluorophores / dyes
- Computational heavy
- Long imaging time
 - drift correction required
 - difficult for life cell imaging

Acknowledgment

University of Munich: Department I / II Division of Microbiology

AG Bramkamp

+ new / former members and students

Funding

Deutsche Forschungsgemeinschaft

Thank you for your attention!