SFB 1064

Links and Functions

Breadcrumb Navigation


A26 - Mechanisms of Chromatin Replication

2 PhD positions available. Download job description (pdf, 3 MB)

The entire chromosome must be replicated and reassembled into daughter chromatids. Thus, the accurate duplication of eukaryotic chromosomes in the S phase of the cell cycle, consisting of genomic DNA and associated proteins, is one of the most fundamental processes of dividing cells. Errors in this process as well as changes in replication fork rates can be catastrophic and might result in “out-of-control” cells with the potential to cause diseases like cancer. It is largely unknown, how the eukaryotic replication machinery deals with chromatin during replication, how chromatin structure changes, how nucleosomes are disassembled in front, and reassembled in the back of the replicative helicase or to what extent chromatin factors and histone marks affect the progression of the replication fork through chromatin.

Using purified proteins, I recently established a novel biochemical chromatin replication system with the potential to answer these fundamental questions directly (Kurat et al., 2017). My lab will use this in vitro system in combination with in vivo cell biological approaches, genomic and proteomic screens as well as structural analyses to determine how chromatin replication rates are achieved on a global level and how this is regulated under normal conditions and under replication stress.

Figure_kurat 750x

Figure modified from Kurat et al., Mol Cell. 2017 Jan 5;65(1):117-130. Left panel shows a chromatin replication reaction in vitro using ~ 30 purified protein complexes. How accurate replication rates are achieved on a global scale and how chromatin factors interact with components of the replication machinery (right panel), remains poorly understood.

Kurat, Christoph

Dr. Christoph Kurat

Biomedical Center - Molecular Biology, LMU Munich

+49 89 2180 75435